Improving volcanic ash fragility functions through laboratory studies: example of surface transportation networks

نویسندگان

  • Daniel Mark Blake
  • Natalia Irma Deligne
  • Thomas McDonald Wilson
  • Grant Wilson
چکیده

Surface transportation networks are critical infrastructure that are frequently affected by volcanic ash fall. Disruption to surface transportation from volcanic ash is often complex with the severity of impacts influenced by a vast array of parameters including, among others, ash properties such as particle size and deposit thickness, meteorological conditions, pavement characteristics, and mitigation actions. Fragility functions are used in volcanic risk assessments to express the conditional probability that an impact or loss state will be reached or exceeded for a given hazard intensity. Most existing fragility functions for volcanic ash adopt ash thickness as the sole hazard intensity metric that determines thresholds for functional loss. However, the selection of appropriate hazard intensity metrics has been highlighted as a crucial factor for fragility function development and recent empirical evidence suggests that ash thickness is not always the most appropriate metric. We review thresholds of functional loss for existing published surface transportation (i.e. road rail, maritime and airport) fragility functions that use ash thickness. We then refine these existing functions through the application of results from a series of recent laboratory experiments, which investigate the impacts of volcanic ash on surface transportation. We also establish new fragility thresholds and functions, which applies ash-settling rate as a hazard intensity metric. The relative importance of alternative hazard intensity metrics to surface transportation disruption is assessed with a suggested approach to account for these in existing fragility functions. Our work demonstrates the importance of considering ash-settling rate, in addition to ash thickness, as critical hazard intensity metrics for surface transportation, but highlights that other metrics, especially particle size, are also important for transportation. Empirical datasets, obtained from both post-eruption field studies and additional laboratory experimentation, will provide future opportunities to refine fragility functions. Our findings also justify the need for rapid and active monitoring and modelling of various ash characteristics (i.e. not ash thickness alone) during volcanic eruptions, particularly as potential disruption to surface transportation can occur with only ~ 0.1 mm of ash accumulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Framework for developing volcanic fragility and vulnerability functions for critical infrastructure

Volcanic risk assessment using probabilistic models is increasingly desired for risk management, particularly for loss forecasting, critical infrastructure management, land-use planning and evacuation planning. Over the past decades this has motivated the development of comprehensive probabilistic hazard models. However, volcanic vulnerability models of equivalent sophistication have lagged beh...

متن کامل

Impact of Volcanic Ash on Road and Airfield Surface Skid Resistance

Volcanic ash deposited on paved surfaces during volcanic eruptions often compromises skid resistance, which is a major component of safety. We adopt the British pendulum test method in laboratory conditions to investigate the skid resistance of road asphalt and airfield concrete surfaces covered by volcanic ash sourced from various locations in New Zealand. Controlled variations in ash characte...

متن کامل

Automated Monitoring of Volcanic Ash Micro- and Macro-physical Properties: a Comparison of Current and Future Satellite Instrument Capabilities

Introduction Airborne volcanic ash is a major aviation, health, and infrastructure hazard. When ingested into aircraft engines, volcanic ash can cause engine damage or failure. For example, in December 1989, a 747 jetliner carrying 231 passengers encountered an ash cloud during an eruption of the Mount Redoubt volcano, located southwest of Anchorage, AK. Within 60 seconds of encountering the he...

متن کامل

Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data

[1] Volcanoes confront Earth scientists with new fundamental questions: Can airborne volcanic ash release nutrients on contact with seawater, thereby excite the marine primary productivity (MPP); and, most notably, can volcanoes through oceanic fertilization affect the global climate in a way that is so far poorly understood? Here we present results from biogeochemical experiments showing that ...

متن کامل

Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

[1] We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3 –174 of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic eruptions: the 18 May 1980 Mount St. Helens eruption, the 1989–1990 Redoubt eruption, and the 18 August and 17 September...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017